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Well-established causal links exist between maternal nutritional deficits and

embryo health and viability. By contrast, environmental effects operating

through the father that could influence embryo mortality have seldom been

examined. Yet, ejaculates can require non-trivial resource allocation, and

seminal plasma components are increasingly recognized to exert wide-ranging

effects on females and offspring, so paternal dietary effects on the embryo

should be expected. We test for effects of varying levels of protein (P), carbo-

hydrate (C) and caloric load in adult male diet on embryo mortality in

Drosophila melanogaster. We demonstrate that macronutrient balance and calo-

ric restriction exert significant effects, and that nutritional effects are more

impactful when a prior mating has occurred. Once-mated males produced

embryos with marginally elevated mortality under high-caloric densities

and a 1 : 8 P : C ratio. In contrast, embryos produced by twice-mated males

were significantly more likely to die under male caloric restriction, an outcome

that may have resulted from shifts in ejaculate quality and/or epigenetic

paternal effects. Body nutrient reserves were strongly and predictably altered

by diet, and body condition, in turn, was negatively related to embryo

mortality. Thus, sire nutritional history and resultant shifts in metabolic

state predict embryo viability and post-fertilization fitness outcomes.
1. Introduction
Offspring typically require considerable investment of time, energy and other

resources to succeed [1]. Because females produce large and nutritious eggs,

they by definition invest more than males into gamete production, and in

many animal species maternal care continues to be substantial over the course

of offspring growth and development [2]. Consequently, variation in the health

and nutritional state of the mother can exert a profound influence on offspring

fitness-related phenotypes. Embryo mortality is of considerable interest, as it

can be a crucial determinant of reproductive failure in a variety of animal species

[3–7], including humans. For example, clinical studies of human pregnancy loss

estimate that embryonic mortality prior to implantation may account for a striking

30% of conceptions [8]. Research into maternal transmission of nutritional and

other environmental effects to the embryo is both abundant and diverse [9–11].

In contrast, the role of paternal dietary effects on embryo viability has been a

neglected area of study. This research imbalance is perhaps unsurprising, given

that sperm are tiny and lack a nutritive component, and that ejaculates have

traditionally been assumed to be inexpensive to produce [2,12], but see [13].

Moreover, males are often also emancipated from many forms of progeny provi-

sioning and care, which is a hallmark of polygynous species where males transfer

nothing to the female other than an ejaculate at mating [1,14]. However, ejaculates

are composed of both sperm cells and seminal fluid, the latter containing a

complex mixture of male accessory gland secretions [15], components of which
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are increasingly recognized to affect certain aspects of female

physiology and behaviour, and in shaping offspring pheno-

types [16–18]. In mice, seminal plasma components maintain

sperm viability and integrity, as well as influence normal

embryo development and offspring health [19]. Moreover,

ejaculate production and the maintenance of reproductive tis-

sues are in fact not cost free, and can require non-trivial

resource investment [20–23], often at the expense of other

fitness traits [24,25]. Thus, ejaculatory traits should often be

sensitive to male nutritional history, for which there is some

empirical support [26,27], although such an effect is not

always found [26,28].

Recently, studies have begun to examine effects of major

macronutrients in a geometric framework [29] on male repro-

ductive traits, such as testes mass and epididymal sperm

counts in mice [23], sperm competitiveness in flies [30] and

calling effort in crickets [31]. Macronutrients are an essential

component of an organism’s nutritional environment, and

there is promise of applying the geometric framework

approach toward understanding the relative roles of macro-

nutrient balance and calories on male factor infertility,

similar to its successful deployment for major life-history

traits in females including lifespan and fecundity [32–35].

At present, there are next to no data available concerning

macronutrient effects on embryo mortality exerted through

adult males, limiting our knowledge of the scope of potential

effects of adult diet on post-fertilization fitness outcomes. In

one study, sperm number in cockroaches, Nauphoela cinerea,

increased with intake of P and C, whereas sperm viability

was not affected by macronutrient intake [26]. Hatching suc-

cess of individual eggs was not quantified in this study,

although approximately 9% of females aborted their clutches.

Clutch abortion, however, was not related to male nutrient

intake, suggesting that abortion rate is related to maternal

condition in this cockroach species.

Here, we systematically varied dietary levels of P (as yeast)

and C (as sucrose or fructose) using agar-based substrates [35]

to deliver the experimental diets to adult male Drosophila mela-
nogaster. Whereas sucrose is commonly used as source of C in

such feeding studies [30,33–35], we expanded the design to

compare the effects of sucrose and fructose; both sugars are

present in the fruit substrates on which larvae and adults

feed in nature [36,37], and they can have differential effects

on adult fly metabolic, life-history, and post-mating behaviour-

al phenotypes [38–40]. Males in our study were maintained on

their distinct diets for 17 days, and then mated consecutively to

two virgin females, designated A and B. After mating, females

were allowed to lay eggs under standard conditions for 24 h,

and the proportion of fertilized eggs that died estimated the

embryonic death rate. With these data we modelled interactive

effects of dietary macronutrient concentrations, as well as total

energy content of the food, on the viability of embryos the test

males sired. Concomitant shifts were also measured in three

major indices of male nutrient reserves (viz. total body protein,

lipids and glycogen), thereby integrating information about

physiological state into our assessment of paternal nutritional

effects through to the embryo. Sires were given ad libitum
access to a water source during feeding, thus decoupling diet-

ary treatment from the potential physiological consequences of

dehydration: we were concerned that dehydration could

confound assessment of paternal dietary effects on measured

responses, a complication demonstrated previously for fly

lifespan [41].
2. Material and methods
(a) Source of males
Males were wild-type Canton-S D. melanogaster Meigen used by

Lee et al. [34]. Culture procedures are provided in the electronic

supplementary materials and methods. Males were sourced from

culture vials previously seeded by allowing 10 randomly chosen

sexually mature females (plus 10 males) to lay eggs for 24 h.

Adult flies that emerged from these density-controlled vials were

harvested as virgins within 5 h of emergence under light CO2

anaesthesia. Virgin males were randomly allocated to experimen-

tal diets. The experiment consisted of two replicates, with start

times staggered 5 days apart.

(b) Experimental diets
Diets were prepared by systematically varying yeast and sugar

concentrations in order to achieve the desired array of protein (P)

and carbohydrate (C) ratios and caloric densities. The experiment

used two sugars, sucrose and fructose, as the main source of

carbohydrate. For each sugar, we used five P : C ratios of 1 : 2, 1 :

4, 1 : 8, 1 : 16, 1 : 32 at each of three caloric densities (total P þ C)

of 100, 200 and 400 g l21. The caloric content of protein per unit

mass is equivalent to carbohydrate [42], so we consider total P þ
C to represent caloric load. Protein was entirely derived from

hydrolysed yeast (MP Biomedicals, catalogue no. 0210330405).

Macronutrient concentrations were calculated based on an analysis

of the hydrolysed yeast conducted by FeedTest Laboratory

(Victoria, Australia), indicating 62.1% protein and 1.9% total carbo-

hydrate (free sugars þ starch). Thus, our experiment consisted of

15 experimental diets � 2 sugar types ¼ 30 total diets for each

of two overlapping replicates. Details on diet preparation are

provided in the electronic supplementary materials and methods.

(c) Feeding protocol
Diets were delivered to test males in vials by allowing them to

feed from the surface of the food [35]. Test males were main-

tained on their respective diets for 17 days, at a density of 10

males per vial. There was one vial per diet per replicate, and

males were transferred to fresh food vials every 2 days. In repli-

cate 1, two males were lost during transfer to fresh vials, and one

male was injured during transfer and excluded from the exper-

iment. In replicate 2, one male was lost during transfer, and

one male was injured and, therefore, excluded. No males died

during experimental feeding.

(d) Mating assay
In each replicate, matings were conducted at 26–278C. Before lights

were turned on, males were individually transferred under dim red

light from feeding vials into numbered mating vials containing a

7 ml agar substrate (composed of 0.5% agar plus inhibitor). Five

males per diet were used, so that there was a total of 150 mating

vials. Mating vials were lined up in random sequence with respect

to treatment along a desktop, and males were allowed to acclimate

to mating vial conditions for 60 min in the dark. When lights were

turned on at approximately 08.00 h, a 5-day-old virgin female was

gently aspirated into each vial sequentially. All females had been

held since emergence in yeasted cornmeal vials. In this way,

female age and nutritional status were tightly controlled, limiting

variation in maternal condition and embryo age at deposition

[43]. Each mating vial was monitored until a copulation occurred

or for a maximum of 2 h. Within 15 min of the end of a male’s

first copulation, the male was transferred to a fresh mating vial con-

taining another 5-day-old virgin female. A male’s first and second

females are referred to as females A and B, respectively. Thorax

length, as an estimate of body size, was measured for all females

that mated. For each vial, we recorded the time at which (1) the
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female entered the vial, (2) copulation began, and (3) the pair sep-

arated. Copulation duration was taken as the time from onset of

copulation to separation.

(e) Embryo death rate and total eggs laid
All mated A and B females were transferred to an oviposition

vial within 3 h of copulation. Females were allowed to lay eggs

in a first vial (Vial 1) for 24 h, and then transferred to a second

oviposition vial (Vial 2) for an additional 24 h of egg laying.

Oviposition vials contained grape-agar substrate to promote egg

deposition and to provide a high-contrast background against

which eggs could readily be examined. Embryo death rate was

quantified for eggs deposited into Vial 1. For Vial 2 we also

counted eggs deposited, but did not quantify the embryo death

rate because of time constraints.

To quantify embryo death rate, we counted total eggs depos-

ited by females under a stereomicroscope, and then incubated

the vials for a minimum of 24 h at 25+18C and a 12 h (dark) :

12 h (light) photoperiod to allow eggs to hatch; in D. melanogaster
embryogenesis lasts �22 h at 258C [44]. Eggs are fertilized in the

uterus, and when newly fertilized eggs are deposited they are

homogeneous milky-white in appearance. Over the course of

development, fertilized eggs undergo distinct and discernable

morphological changes. Following the 24 h incubation period, all

hatched and unhatched eggs were counted. Each unhatched egg

was examined (at 60�) in the position it was laid, or carefully

lifted from the food medium using a dull dissecting probe and

put on its side. We used morphological criteria [44,45] to determine

whether it had undergone development to confirm that the egg

had been fertilized and the embryo had died. Mid-stage embryos

were identified by a darkening of the inner region and the appear-

ance of segment formation, and late-stage embryos were identified

by the presence of prominent segmentation of the cuticle, trachea

and mouthparts [44,45]. When structures could not be unambigu-

ously discerned, the unhatched egg was placed in a drop of 1%

physiological saline on a microscope slide and re-examined. If

still no segmentation could be discerned, the egg was deemed

unfertilized. After this first count, all vials were incubated for an

additional 24 h under conditions described above, and unhatched

eggs were each examined a second time to verify they were not

viable (none were). Thus, the unfertilized category contained

oocytes that were either truly unfertilized plus any that had been

fertilized but that had died prior to mid-stage development

(i.e. before any segment formation could be discerned, see

above). Our analyses excluded this unfertilized category of eggs.

In other words, our analyses considered variation only in the

proportion of fertilized eggs that died from the mid-stage of devel-

opment and beyond, and thus, by potentially excluding some early

stage embryos that died, likely underestimated the true embryonic

death rate somewhat. Of the total number of unhatched oocytes

from A and B females, the proportion that fell into the unfertilized

category was 0.170 and 0.182, respectively.

Prior to statistical modelling, we excluded all data for which

females laid 0 or 1 egg. Among A females across replicates,

15 and 32 flies laid 0 and 1 egg, and among B females, 10 and 21

females laid 0 and 1 egg, respectively. Among A and B females,

the average number of eggs per female from which we determined

the embryo death rate was 28.8 (s.d. ¼ 8.43, range 5–58, n ¼ 237)

and 29.1 (s.d. ¼ 8.00, range 3–56, n ¼ 220), respectively. Total

eggs laid for a given female was calculated by summing the

number of eggs she laid between the two oviposition vials.

( f ) Nutritional indices of male body condition
While the males selected for the mating assay were acclimating to

mating vial conditions (see above), the remaining flies from each

diet were frozen and later assayed for whole-body lipids, glycogen

and protein; details are provided in the electronic supplementary

materials and methods. All measured body nutrient quantities
were normalized to dry weight, and expressed as micrograms of

body nutrient per milligram of dry weight. We calculated total

nutrient reserves by summing across the three nutritional indices.

The yield from the complete oxidation of triacylglycerols is

about 9 kcal g21 (38 kJ g21), and about 4 kcal g21 (17 kJ g21) for

carbohydrates and proteins [46]. Total energy reserves (kJ mg21

fly dry weight) was calculated by first converting the quantity of

each nutrient to kilojoules of energy using these conversion factors,

then summing across indices.

(g) Statistical analyses
To model responses of our focal traits over diet macronutrient

(protein and carbohydrate) space, we used generalized additive

models (GAMs) [47] with the mgcv package [48] of the R language

[49]. 2D response surfaces were visualized using thin-plate splines

in R. Regression analyses were conducted in JMP [50] to assess

relationships between nutritional indices of condition and embryo

death rate; embryo death rate was arcsine(sqrt)-transformed prior

to analyses. Details pertaining to GAM construction, model

comparisons, and outlier assessment are provided in electronic

supplementary materials and methods.

3. Results
(a) Paternal dietary effects on embryo mortality
For each of the males’ two mates, we first compared response

surfaces for embryo mortality corresponding to the different

sugar types. For A females (males’ first mates), sugar surfaces

differed significantly (likelihood-ratio test (LRT), deviance:

28.72, p ¼ 0.003). Consequently, macronutrient effects were

evaluated using GAMs separately by sugar. For both sucrose

and fructose, there were significant P � C interaction effects

on embryo mortality ( p ¼ 0.001 and 0.005, respectively, elec-

tronic supplementary material, table S1). Visual comparison

of the surfaces (figure 1a,b) showed that although peak mor-

tality was shifted between the sugars, the shift occurred along

the same isocaloric band of highest caloric density (400 g l21

P þ C). For sucrose, mortality was greatest at low P : C ratios

(peaking at 1 : 8, figure 1a), whereas for fructose, the peak

occurred at a 1 : 2 P : C ratio, at the far-right top corner of

nutrient space (figure 1b).

For B females (males’ second mates), sugar surfaces also dif-

fered significantly (LRT, deviance: 47.23, p ¼ 5.71 � 10206), so

data were likewise analysed separately by sugar. For sucrose,

there was a significant P � C interaction ( p ¼ 0.00005), whereas

this interaction was not detected for fructose ( p ¼ 0.491) (elec-

tronic supplementary material, table S2; figure 1c,d). In

notable contrast to A females, embryo mortality on the sucrose

diets was highest at lowest caloric densities (100 g l21 P þ C),

but likewise peaked at a 1 : 8 P : C ratio (figure 1c). Embryo mor-

tality was lowest under dietary conditions of highest C and

lowest P (blue areas of figure 1c,d). Thus, although the

two sugar surfaces for B females differed significantly,

they nevertheless showed broadly similar topographies, nota-

bly in terms of the location of lowest embryo mortality;

lowest mortality in both cases was promoted by high-energy,

low P : C ratio, diets.

To explore the caloric density effect further, we con-

structed a separate GAM for each sugar type, and entered

caloric density as an additional explanatory term. Models

were simplified by dropping non-significant covariates from

previous models (viz., female thorax length and copulation

duration). In all cases where previously we detected significant

P � C effects, these significant effects persisted upon the
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addition of caloric density (table 1). For B females, in addition

to the significant effect of the P � C interaction, there was also a

significant effect of caloric density of embryo mortality: mean

probability of embryo mortality decreased with caloric density

(0.0167 (100 g l21), 0.0138 (200 g l21) and 0.00820 (400 g l21)),

as could be predicted from the related surface plot especially

for sucrose (figure 1c).

Thus, these results demonstrate significant consequences of

both macronutrient ratio and caloric density in the diet of sires

for embryo mortality. The pattern of embryo mortality

expressed in 2D nutritional space showed that macronutrient

effects in A females was essentially in reverse configuration

to that for B females, which was particularly evident for the

sucrose-based diets. A calorically impoverished paternal diet

increased embryo mortality, but only after males had had a

previous mate.

(b) Dietary effects on indices of body condition
We tested for effects of the above nutrient regimen on male

body condition, and found that varying levels of P and C,

and the P � C interaction, exerted strongly significant effects

(electronic supplementary material, table S3), consistent with

previous work with this species [35]. Males accumulated great-

est lipid reserves on low P and high C diets, and were leanest at

high P (electronic supplementary material, figure S1a,b). For

body protein reserves, there likewise were pronounced effects

of dietary P and C, although the P � C interaction did not

reach statistical significance for fructose (electronic supplemen-

tary material, table S3). Response surfaces for body protein
were approximately reversed compared to those for lipids:

body protein increased sharply with increasing dietary P (elec-

tronic supplementary information figures S1c,d). Protein

reserves were lowest when dietary P and C were both in

lowest abundance. Glycogen reserves, in turn, were primarily

affected by C, as no significant effects of P or the P � C inter-

action were detected (electronic supplementary material,

table S3). Body glycogen reserves increased with increasing C

(electronic supplementary material, figures S1e,f). The effect

of C on glycogen was significant for the sucrose-based diet

(electronic supplementary material, table S3).

(c) Indices of body condition and embryo mortality
We tested whether the diet-induced changes in body nutrient

reserves in turn predicted embryonic death rate. Given the

significant effect of caloric restriction on embryo mortality

described above for B females (see Results §3(a)), we predicted

an inverse relationship between male body condition and

the mortality of embryos deposited by these females. Although

none of the six individual indices of sire condition significan-

tly predicted embryo mortality (electronic supplementary

material, table S4), all relationships were negative, and

their mean was significantly different from zero (mean b̂

(s.e.)¼ 20.003554 (0.001287), t ¼ 22.7604 testing Ho: mean

b̂ ¼ 0, two-tailed p ¼ 0.040). For A females, in contrast, four

of the six regression coefficients were negative (and none

were significant, all ps . 0.3), and the mean did not differ

significantly from zero (mean b̂ (s.e.)¼ 0.0009149 (0.001195),

t ¼ 0.7656, testing Ho: mean b̂ ¼ 0, two-tailed p ¼ 0.479).

We created an index of total nutrient reserves to capture

variation in overall body condition of sires, and regressed

embryo mortality on this index. Whereas the relationship

was not significant for fructose (electronic supplementary

material, table S4; figure 2a), it was significantly negative

for sucrose (electronic supplementary material, table S4;

figure 2b). A formal check for outliers identified two potentially

influential data points identified with arrows in figure 2b
(using the conservative criterion of Cook’s D . 0.5, as all

data had D values , 1.0). Removal of these data did not alter

the regression conclusions (figure 2c). We also examined the

relationship between total energy reserves, and found that it

was likewise significantly negatively related to embryo mor-

tality (electronic supplementary material, table S4)—males

with fewest metabolic reserves sired embryos with greater

average probability of death. For A females, relationships

between total nutrient reserves or total energy reserves and

embryo mortality were not significant, either for sucrose or

fructose ( ps . 0.5).

(d) Dietary effects on total fecundity of females
We tested for responses in female reproductive output to

male dietary treatments, and found no significant effect of

dietary P, C or the P � C interaction, on the total number of

eggs deposited by either A or B females (electronic supplemen-

tary material, table S5). These results were consistent between

the sugars.
4. Discussion
The main findings of our study are that varying macronutrient

levels and caloric density of adult male diet significantly and
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Table 1. GAM results for embryo mortality with the addition of caloric density as an explanatory term. Terms that are significant or close to the chosen
significance level are given in bold.

A females

sucrose

parametric terms estimate s.e. z p

Cal.density 262.43 43.18 21.446 0.148

smooth terms edf Ref.df x2 p

s( prop.P) 1.000 1 2.089 0.148

s( prop.C) 4.000 4 8.995 0.062

s( prop.P, prop.C) 3.389 6 14.588 0.002

fructose

parametric term estimate s.e. z p

Cal.density 37.02 31.90 1.160 0.246

smooth terms edf Ref.df x2 p

s( prop.P) 2.577 2.791 1.893 0.511

s( prop.C) 1.000 1.000 1.347 0.246

s( prop.P, prop.C) 3.870 6.000 12.031 0.004

B females

sucrose

parametric term estimate s.e. z p

Cal.density 23.70 3 1023 1.39 3 1023 22.658 0.008

Replicate 20.733 0.300 22.449 0.014

smooth terms edf Ref.df x2 p

s( prop.P) 1.43 � 1024 1.64 � 1024 0.00 0.995

s( prop.C) 1.00 1.00 1.279 0.258

s( prop.P, prop.C) 2.068 3.00 17.261 3.18 3 1025

fructose

parametric term estimate s.e. z p

Cal.density 0.500 9.8471 0.051 0.960

smooth terms edf Ref.df x2 p

s( prop.P) 1.000 1 0.003 0.960

s( prop.C) 1.000 1 0.003 0.959

s( prop.P, prop.C) 4.876 � 1025 6 0.000 0.423
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independently affected probability of embryo mortality,

and that, strikingly, these effects depended on male mating

order. 2D surfaces depicting P � C effects on embryo mortality

showed that responses were essentially in flipped configur-

ation between a male’s first and second females, and this

effect was particularly evident for sucrose-based diets. Macro-

nutrient concentrations exerted pronounced effects on all

indices of male body condition, and body condition, in turn,

predicted embryo mortality—males in the worst condition

sired embryos with greater probability of death, and this

effect was likewise restricted to when a previous mating

event had recently occurred.

In all cases where significant P � C effects on embryo mor-

tality were detected, the addition of caloric density as an

explanatory term into the statistical models did not abolish

the significant P � C interaction. This outcome suggests that
the interactive effects of macronutrient concentrations modulate

rate of embryo mortality independently of caloric density.

Indeed, caloric density was itself also significantly negatively

related to embryo mortality, but only among B females. In

fact, for sucrose-based diets, embryo mortality among B females

was approximately two fold greater on the most impoverished

diets (100 g l21) relative to the most enriched ones (400 g l21).

The likely cause(s) of these results include diet-induced

alterations to sperm integrity, seminal fluid composition or

both. For example, dietary treatments that contribute to the

development of metabolic syndrome in humans and mice can

alter sperm characteristics, such as by causing DNA damage

as nicks and breaks, and epigenetic modifications; both types

of DNA alterations have the potential to compromise embryo

viability and fetal development [51,52]. However, the facts

that both diet and body condition effects were detected only
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in twice-mated sires in our study points to shifts in seminal fluid

composition also as a likely causal factor, because these results

are consistent with patterns of seminal fluid depletion across

successive matings. Previous work with Drosophila and other

species has shown that males become depleted of seminal

fluid components across successive copulations [53,54], and

that males can strategically allocate seminal fluid products to

females [55,56]. Indeed, in D. melanogaster, some accessory

gland proteins (Acps) can deplete by as much as 30% in a
single mating [54]. These observations suggest that seminal

fluid production is under resource-based constraints and

should be sensitive to diet. Moreover, whereas seminal fluid

reserves in Drosophila and other species decline across sub-

sequent copulations, they also do so more steeply than sperm

supplies [53,57], which also fits with our results in that we

failed to detect significant effects of male diet on female fecund-

ity—we would have expected females to have deposited fewer

eggs had they carried reduced sperm supplies [58].

The known functional properties of seminal fluid in

Drosophila and other animals, further implicate seminal fluid

in contributing to observed dietary effects. In Drosophila, semi-

nal fluid comprises secretory products of the accessory glands,

ejaculatory duct and ejaculatory bulb [59], and like in other ani-

mals, several Acps in the seminal fluid have been shown to

exert a diversity of effects [15,60]. In Drosophila, Acps exert

effects on female behaviour, physiology and sperm use, and

of particular relevance to our study, potentially on sperm integ-

rity and embryo viability as well [59,61]. For example, after

copulation, the majority of Acp62F in D. melanogaster remains

in the female reproductive tract including within the sperm sto-

rage organs, suggesting that it may play a role in the protection

of sperm, perhaps by preventing attack by proteases [62].

Antimicrobial peptides that have been identified in the ejacu-

late may also protect sperm, eggs as well as the embryo from

microbial attack [15,63,64]. Such peptides may play a protective

role by coating the surface of the fertilized egg, as has been

suggested for the medfly, Ceratitis capitata [65].

Thus, although the dietary effects on embryo mortality may

have resulted from nutritionally deprived males being unable

to transfer optimal quantities of specific seminal plasma

components, potentially more complex factors may have also

been at play. For example, overproduction of reactive oxygen

species (ROS), either within the seminal fluid male or testicular

environment, could have damaged the sperm genome/epigen-

ome, thereby contributing to the responses we observed. In a

recent study, when larval D. melanogaster were fed diets contain-

ing a range of sucrose concentrations (0.25–20%, w/v), adults

from the lowest concentration exhibited elevated levels of oxi-

dized lipids and protein, in addition to elevated superoxide

dismutase activity [66]. It was suggested that the redox imbal-

ance associated with carbohydrate restriction might actually

be causally related not to carbohydrate levels per se, but to

associated adverse effects of protein overconsumption [66].

Under conditions of inadequate dietary carbohydrate, animals

may over-consume protein to reach their carbohydrate ‘intake

target’ [34,67], and consequently incur ROS-induced damage

to cellular constituents [66]. This effect on sperm possibly con-

tributed to the elevated embryo mortality we observed with

decreasing caloric density and body condition. However, if

the elevated mortality we detected had been driven by sperm

damage, we would have expected patterns of mortality

expression over nutrient space to be more or less congruent

between A and B females, which it was not. It nevertheless

remains possible that changes in embryo mortality occurred

through the combined effects on seminal fluid and sperm, as

the seminal fluid itself may possess antioxidant properties,

and in this way protect sperm DNA from ROS attack [68]. In

golden hamsters, Mesocricetus auratus, antioxidant enzymes

within the male accessory gland fluid protect the sperm from

oxidative damage; without this protection the ROS damage sus-

tained by sperm can have negative consequences for early

embryonic development and viability [69].
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Interestingly, our data also indicate that fructose (a mono-

saccharide) and sucrose (a disaccharide of fructose þ glucose)

have different effects on embryo mortality. In both A and B

females, peak mortality was shifted in the direction of diets

with increasing P when flies were fed on fructose-based

diets. This pattern implies that the difference in embryo mor-

tality was at the level of the relationship between the sugars

to protein. Why this should be the case, however, is

unknown, and deserves further study. Perhaps fructose and

high P consumption had synergistic effects on ejaculate

constituents through ROS damage [39,70].

Our analyses also revealed pronounced dietary effects on

all three body nutrient reserves that we measured, providing

a robust demonstration that dietary restriction had deteriora-

tive effects on male body condition. Effects of macronutrient

levels and/or interactions between them were significant for

all body nutrients, being strongest for lipid and protein

stores, and highly consistent with a previous study of

D. melanogaster [35]. Crucially, we found that all of our indi-

vidual measures of male body condition scaled negatively

with embryo mortality among B females, and when condition

was analysed as a mean value, the relationship was statis-

tically significant. The caloric effect on embryo mortality, in

contrast, was absent for A females, and predictably, there

was no statistically significant relationship between male

body condition and embryo mortality for A females either.

In sum, the results support the hypothesis that diet-

induced variation in the metabolic state of sires influences

early developmental processes in offspring and post-
fertilization fitness outcomes. This link may have impli-

cations for understanding the consequences of suboptimal

diet for ejaculate quality and reproductive fitness in animals

generally, and for elucidating related processes in natural

populations. Our data predict that when expression of male

signalling traits is body condition-dependent [71], female

mate choice on the basis of ornamentation may be selected

as a function of a previously underappreciated and relatively

‘cryptic’ direct benefit in the form of a paternally driven influ-

ence on embryo viability.
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